
 1

Developing Multiplayer Add-Ons for
Flight Simulator 2000
Flight Simulator 2000 provides support for peer-to-peer multiplayer gaming. Leveraging
Microsoft’s DirectPlay technology, we enable multiple users to share the same airspace
over a modem, Local Area Network (LAN), and via a serial connection. It’s relatively
simple for end users to connect with others using this technology.

In addition, websites can take advantage of these multiplayer features by setting up
Lobbies (using DirectPlay) where different users can meet on the Internet to join different
Flight Simulator sessions. We make such a lobby available from within Flight Simulator
2000 itself—users can connect directly to an area on the MSN Gaming Zone where
multiple users interact.

This document is aimed at developers who want to build add-on products for Flight
Simulator specifically designed to take advantage of its multiplayer capabilities. For
example, you could use this information to create an add-on application that provides Air
Traffic Control (ATC) functionality to interact with multiple players on the Internet or on
a local area network (LAN).

Audience

This document assumes you have the following expertise:

• Experience in developing applications using Visual C++ or some equivalent high-
level language.

• Experience in, and understanding of, the features and capabilities of the Microsoft
DirectPlay technology (from the DirectX 7 SDK). You’ll find the DirectX 7 SDK
and other relevant technical information on the Microsoft web site at
http://msdn.microsoft.com/directx.

Note: The information contained in this document is not supported by Microsoft Product
Support.

How Multiplayer Works

The architecture of the multiplayer system is based on information packets sent between
the players in a session. Each information packet has a unique name and ID associated
with it. Some packets contain extra information and have a data structure associated with
them. Since this is a peer-to-peer system, all packets are sent to all players in the session.
Flight Simulator 2000 supports up to 255 players in a session.

Players (not planes) are the core of the multiplayer system. In the system, players fall into
three categories: unknown, players, and observers.

 2

• The "unknown" player designation is a temporary designation used when a player
first joins a session. A player is classified as unknown until the session host
responds as to whether they can join the multiplayer session as a player or an
observer.

• The "player" classification designates a player that has a visual presence on
remote machines and can be collided with.

• The "observer" classification designates a player that watches other players, but
has no visual presence on remote machines and can't collide with other players.

The only way to provide multiplayer functionality with Flight Simulator is through the
multiplayer technology described in this document. Flight Simulator 2000 doesn't provide
any other hooks for access to data relating to players in a session. Once you join a session
through the multiplayer technology, your application can hook into the message stream to
gain access to the remote player data.

See the discussion of Packet IDs and Packet Structures for complete lists of the packet
IDs and packet structures.

Naming Convention

For the sake of brevity within this document, we’ve abbreviated references to Packet IDs
and Packet structures as follows:

• Packet ID references don’t include the MULTIPLAYER_PACKET_ID_ prefix.
• Packet structure references don’t include the MULTIPLAYER_PACKET_

prefix.

 3

Connecting an Add-On
Connecting an add-on to a multiplayer session accomplishes the following:

• Locates a multiplayer session to connect to.
• Connects the add-on to a multiplayer session and creates a DirectPlay player.
• Communicates with the session host to validate the player created by the add-on

(as a player or an observer).
• Determines the characteristics of the other players in the multiplayer session.

To connect an add-on to a Flight Simulator multiplayer session

1. A Flight Simulator 2000 multiplayer session must exist. Start up Flight Simulator
2000 and initiate multiplayer. You can join either as a player (or as a host)—but
make sure that there is room in the session for another player or observer.

2. Scan for available sessions using the DirectPlay EnumSessions function with the
following application GUID specified in the SESSIONDESC2 structure.

GUID_FS = { 0x1f0cb318, 0xf159, 0x432f,
{ 0x8c, 0x38, 0x8c, 0xe7, 0x53, 0xa0,
0x3c, 0xda } };

3. Using the DirectPlay Open function, connect to the session you deem
appropriate. You can either do this visually from Flight Simulator by examining
the sessions listed, or programmatically by scanning the session information
received via EnumSessions.

4. Broadcast a packet to all players in the chosen session using
ADD_PLAYER_REQUEST or ADD_OBSERVER_REQUEST, depending on
what type of add-on ("player" or "observer") you want to add to the session.

5. Wait for a response from the host player of the chosen session, such as
CHANGE_TO_PLAYER, CHANGE_TO_OBSERVER,
ADD_PLAYER_REFUSED, or ADD_OBSERVER_REFUSED.

6. If the host hasn't responded to a player's join request in a specified amount of time
(30 seconds), send a RETRANSMIT_JOIN_PLAYER or
RETRANSMIT_JOIN_OBSERVER packet and return to step 4.

7. If the response from the host is CHANGE_TO_PLAYER or
CHANGE_TO_OBSERVER, check the player ID in the message data. If the
player ID matches the player ID of the local player, the add-on is successfully
connected to the session.

8. -Or-
9. If the response from the host is ADD_PLAYER_REFUSED or

ADD_OBSERVER_REFUSED, the add-on wasn't able to connect to the session
and needs to take appropriate action. For example, if the response from the host
was ADD_PLAYER_REFUSED, the add-on could display a message informing

 4

the user that they couldn't join as a player and ask them if they want to join as an
observer instead.

Note: If the host doesn't allow the add-on to join the session, the add-on should end its
connection to the session.

Determining Player Profiles
Once you've connected an add-on to the session, you need to determine the
characteristics of each of the other players in the session. The add-on must determine
whether remote machines represent a "player" or an "observer." The add-on must also
determine whether remote players will be sending or receiving detailed plane
information.

All multiplayer sessions have two DirectPlay groups, FS61_REQUEST_PARAMS and
FS61_REFUSE_PARAMS.

• Remote machines that belong to the FS61_REQUEST_PARAMS group are
interested in receiving detailed aircraft information;

• Remote machines that belong to the FS61_REFUSE_PARAMS group aren't
interested in receiving detailed aircraft information.

Note: The grouping occurs when the user joins a multiplayer session. Flight Simulator
provides the option to choose to receive (or not receive) detailed aircraft information via
a checkbox in the multiplayer dialog.

To determine player profiles

1. Use the DirectPlay EnumGroups function to create a list of groups in the session.
The two groups used by the multiplayer system are FS61_REQUEST_PARAMS
and FS61_REFUSE_PARAMS. The add-on will need to make its player a
member of one of the FS61_REFUSE_PARAMS group.

2. Using the group ID associated with the FS61_REFUSE_PARAMS group and the
player ID of the add-on's player, call the DirectPlay function
AddPlayerToGroup.

3. Use the DirectPlay EnumPlayers function to create a list of the other players in
the session and mark each player as having an "unknown" player type.

4. Step through the list of players and send each player a
QUERY_PLAYER_TYPE packet.
Wait for a CHANGE_TO_PLAYER or CHANGE_TO_OBSERVER message
that identifies a player's type. (The CHANGE_TO_PLAYER or
CHANGE_TO_OBSERVER message can come from the session host as well as

 5

from the unknown player.) Use the player_id field in the packet to determine
which player's information should be updated.

5. Every 30 seconds or so, scan the known player list and send any "unknown"
players a QUERY_PLAYER_TYPE packet.

It's possible for a player to join a session after the add-on creates a player. In that case,
DirectPlay sends a message, DPMSG_CREATEPLAYERORGROUP.

When a new player notification is received

1. Add the new player to the current player list and tag that player as unknown.

2. Send the new player a QUERY_PLAYER_TYPE packet.
Wait for a CHANGE_TO_PLAYER or CHANGE_TO_OBSERVER message
that identifies the player's type. The CHANGE_TO_PLAYER or
CHANGE_TO_OBSERVER message can originate from the unknown player or
the session host.

3. Use the player_id field in the packet to determine which player's information to
update.

Constructing a Packet
The behavior of an add-on after it's connected to a session reflects the player type of the
add-on.

• An "observer" type add-on monitors the packet stream and doesn't send packets
unless prompted by a query, such as QUERY_PLAYER_TYPE.

• A "player" type add-on responds to packets and sends location updates
(POSITION_LLAPBH or POSITION_VELOCITY) to all players in the
session at the rate of four packets per second.

Both player and observer add-ons must monitor POSITION_LLAPBH and
POSITION_VELOCITY packets to track other players.

All of the packets sent by the multiplayer system have a standard header; for more
information, see the MULTIPLAYER_PACKET_HEADER structure in the discussion
of Packet Structures.

• The first element in the structure (packet_id) is a 32-bit number that designates
the ID of the packet;

• The second element in the structure (data_size) specifies the size of the data
block that follows the header.

 6

• The third element in the structure (data[]) is a placeholder that indicates where
extra packet data will begin. It's possible that a packet will contain only a packet
ID and size fields; the data size can be 0.

The following pages describe the packets encountered during the course of a normal
session and identify what action (if any) the add-on should take when the packet is
received.

Send-Only Packets
The following packets are those your add-on might typically send during a session. If
your add-on receives any of these packets, it should be ignored.

ADD_OBSERVER_REQUEST

An add-on sends this packet to all players when joining the session as an
observer. Send this packet with guaranteed messaging. Contains no extra data.

ADD_PLAYER_REQUEST

An add-on sends this packet to all players when joining the session as a player.
Send this packet with guaranteed messaging. Contains no extra data.

CHAT_TEXT_SEND

Represents a chat message. The chat_data field is a null-terminated string
containing the chat message. An add-on must include the null termination on the
message when sending this packet.

 7

Receive-Only Packets
The following packets could be received by your add-on during a session. Appropriate
actions are noted where necessary. An add-on should never send any of these packets.

ADD_OBSERVER_REFUSED

Indicates that the add-on hasn't been successfully added to the session. The add-
on should notify the user and end the DirectPlay connection.

ADD_PLAYER_REFUSED

Indicates that the add-on hasn't been successfully added to the session. The add-
on should notify the user and ends the DirectPlay connection.

LEAVE_SESSION

Indicates that the host wants to remove the add-on from the session. The add-on
responds by closing its connection to the session.

OBSERVER_CHANGE_OK

Indicates that the add-on has been changed from a "player" to an "observer" and
will be recognized as such for the remainder of the session.

OBSERVER_CHANGE_REFUSED

Indicates that the add-on hasn't been allowed to change from a "player" to an
"observer."

Packets Sent and Received
You may send or receive the following packets, depending on the nature of your add-on.

CHANGE_PLAYER_PLANE

Indicates that a player has changed to a new plane. The engine_type field
contains one of the following values:

o ENGINE_TYPE_PISTON = 0
o ENGINE_TYPE_JET = 1
o ENGINE_TYPE_NONE = 2
o ENGINE_TYPE_HELO_TURBINE = 3

The aircraft_name field contains a null-terminated string that indicates the name
of the aircraft.

 8

An add-on shouldn't need to send this packet, but can do so to change the visual
model of the plane that represents the add-on on other machines. When
constructing this packet, ensure that the packet properly accounts for the null
termination required at the end of the aircraft name.

CHANGE_TO_OBSERVER

When received by an add-on, the player_id field in the data structure contains a
DirectPlay player ID. The player associated with this ID is identified as an
"observer" for the remainder of the session.

If the player ID matches the ID of the player created by the add-on, the add-on
has been successfully added to the session as an observer. The add-on doesn't
send location update information.

An add-on must send this packet as a response to a QUERY_PLAYER_TYPE
packet. This response is sent only if the add-on has successfully joined a session
as an observer (see QUERY_PLAYER_TYPE).

CHANGE_TO_PLAYER

When received by an add-on, the player_id field in the data structure contains a
DirectPlay player ID. The player associated with this ID is identified as a "player"
for the remainder of the session.

If the player ID matches the ID of the player created by the add-on, the add-on
has been successfully added to the session as a player. At this point, the add-on
must send location update information with POSITION__LLABPH and/or
POSITION_VELOCITY.

An add-on sends this packet in response to a QUERY_PLAYER_TYPE packet.

PLAYER_CRASH

Indicates that a remote player has registered a collision with the add-on. The add-
on then processes the collision. An add-on sends this packet to another player (but
not to an observer) only if it has registered a collision with that player.

POSITION_LLAPBH

Indicates the location of a remote player. Receiving this packet also implies that
the remote player is in a paused state and their plane shouldn't be collided with for
at least 10 seconds. Each time this packet is received from a player, the collision
avoidance time should be reset to 10 seconds. The reduced (uses only the 10 most
significant bits of pitch, bank, and heading) LLAPBH data contents of this packet
are as follows:

 9

o application_time Field is ignored.
o packet_index Contains an indexing ID that indicates the ordering of

location packets. The index of the last received location packet is stored
on a player-by-player basis. A new packet's contents is considered valid
only if it has a higher packet index than the last packet index received
from a player.

o pbh Contains a fractional representation of the pitch, bank, and heading of
the remote plane. The pitch is found in the most significant 10 bits, bank is
found in the second most significant 10 bits, and heading is found in the
third most significant 10 bits. The least significant 2 bits aren't used.

o lat_I Contains the high-order 32 bits of latitude.
o lon_hi Contains the high-order 32 bits of longitude.
o alt_I Contains the high-order 32 bits of altitude.
o lat_f Contains the low-order 16 bits of latitude.
o lon_lo Contains the low-order 16 bits of longitude.
o alt_f Contains the low-order 16 bits of altitude.

An add-on could also send this packet to change its location in the world without
colliding with other players.

POSITION_VELOCITY

Indicates the location of a remote player. The data contents of this packet are as
follows:

o packet_index See POSITION_LLAPBH packet.
o application_time Field is ignored.
o lat_velocity Contains the latitude component of the plane's current

velocity.
o lon_velocity Contains the longitude component of the plane's current

velocity.
o alt_velocity Contains the altitude component of the plane's current

velocity.
o ground_velocity Contains the net ground velocity of the remote plane.
o reduced_llapbh See POSITION_LLAPBH packet.

All velocities are 16-bit integer,16-bit fractional values with units of feet/second.

An add-on could send this packet to change its location in the world in a manner
that enables positional extrapolation—the packet contains location information
and velocity vectors on which any change in position can be based.

 10

QUERY_PLAYER_PLANE

Indicates that a remote player wants to find out the type of aircraft that the add-on
is flying. The add-on can ignore this packet or send a
CHANGE_PLAYER_PLANE response indicating the aircraft that will represent
the add-on when it has successfully joined as a player.

An add-on sends this packet only to find out the type of aircraft that a remote
player is flying.

QUERY_PLAYER_TYPE

Indicates that the remote machine doesn't know the player type ("player" vs.
"observer") of an add-on. An add-on should only respond to this packet after it
has received a confirmation CHANGE_TO_PLAYER or
CHANGE_TO_OBSERVER packet. At this point, the add-on responds to the
QUERY_PLAYER_TYPE packet with either CHANGE_TO_PLAYER or
CHANGE_TO_OBSERVER, as appropriate.

An add-on sends this packet to a new player after receiving notification from
DirectPlay that a new player has been created. If a player has joined a game, but a
CHANGE_TO_PLAYER or CHANGE_TO_OBSERVER message hasn't
arrived, a QUERY_PLAYER_TYPE message is sent to that player every 30
seconds until a confirmation arrives.

RETRANSMIT_ JOIN_PLAYER

An add-on sends this packet to all players if it has sent an
ADD_PLAYER_REQUEST, but has not received a CHANGE_TO_PLAYER
or an ADD_PLAYER_REFUSED response within 30 seconds. The add-on
continues to broadcast this packet every 30 seconds until it receives either a
CHANGE_TO_PLAYER or an ADD_PLAYER_REFUSED packet.

If an add-on receives this packet, it should be ignored.

RETRANSMIT_ JOIN_OBSERVER

An add-on sends this packet to all players if it has sent an
ADD_OBSERVER_REQUEST, but hasn't received a
CHANGE_TO_OBSERVER or an ADD_OBSERVER_REFUSED response
within 30 seconds. The add-on continues to broadcast this packet every 30
seconds until it receives either a CHANGE_TO_OBSERVER or an
ADD_OBSERVER_REFUSED packet.

If an add-on receives this packet, it should be ignored.

 11

REQUEST_OBSERVER

An add-on sends this packet to all players to change its player type from "player"
to "observer" during a session. If the add-on doesn't receive either an
OBSERVER_CHANGE_OK or an OBSERVER_CHANGE_REFUSED
packet within 30 seconds, it sends a RETRANSMIT_GO_OBSERVER packet.
An add-on can change from a player to an observer, but not from an observer to a
player.

If an add-on receives this packet, it should be ignored.

RETRANSMIT_ GO_OBSERVER

An add-on sends this packet to all players at 30 second intervals if it has sent a
REQUEST_OBSERVER packet, but hasn't received an
OBSERVER_CHANGE_OK or an OBSERVER_CHANGE_REFUSED
response.

If an add-on receives this packet, it should be ignored.

Non-Relevant Packets

Any add-on you build should never send any of the following packets. If your add-on
ever receives one of these packets, just ignore it.

• AIRCRAFT_CANCEL
• AIRCRAFT_SEGMENT
• HOST_QUIT
• INITIALIZE_AIRCRAFT_ SEND
• INITIALIZE_TEXTURE_SEND
• PARAMS
• REMOTE_PLANE_ UNKNOWN
• REQUEST_SITUATION
• SITUATION_DATA
• SYNC_INFORMATION
• TEXTURE_CANCEL
• TEXTURE_REQUEST_LIST
• TEXTURE_SEGMENT

 12

Packet IDs
The following code includes the packet IDs sent by the multiplayer system. You must use
the packet IDs shown in this example to determine packet contents.

// The following defines are the IDs used as tags on the packets sent by
the multiplayer system.

Typedef enum

{

MULTIPLAYER_PACKET_ID_BASE = 0x1000,

MULTIPLAYER_PACKET_ID_PARAMS = MULTIPLAYER_PACKET_ID_BASE,

MULTIPLAYER_PACKET_ID_ADD_PLAYER_REQUEST,

MULTIPLAYER_PACKET_ID_ADD_OBSERVER_REQUEST,

MULTIPLAYER_PACKET_ID_CHANGE_TO_PLAYER,

MULTIPLAYER_PACKET_ID_CHANGE_TO_OBSERVER,

MULTIPLAYER_PACKET_ID_ADD_PLAYER_REFUSED,

MULTIPLAYER_PACKET_ID_ADD_OBSERVER_REFUSED,

MULTIPLAYER_PACKET_ID_QUERY_PLAYER_TYPE,

MULTIPLAYER_PACKET_ID_RETRANSMIT_JOIN_PLAYER,

MULTIPLAYER_PACKET_ID_RETRANSMIT_JOIN_OBSERVER,

MULTIPLAYER_PACKET_ID_REQUEST_OBSERVER,

MULTIPLAYER_PACKET_ID_RETRANSMIT_GO_OBSERVER,

MULTIPLAYER_PACKET_ID_OBSERVER_CHANGE_OK,

MULTIPLAYER_PACKET_ID_OBSERVER_CHANGE_REFUSED,

MULTIPLAYER_PACKET_ID_CHANGE_PLAYER_PLANE,

MULTIPLAYER_PACKET_ID_QUERY_PLAYER_PLANE,

MULTIPLAYER_PACKET_ID_REMOTE_PLANE_UNKNOWN,

 13

MULTIPLAYER_PACKET_ID_PLAYER_CRASH,

MULTIPLAYER_PACKET_ID_HOST_QUIT,

MULTIPLAYER_PACKET_ID_REQUEST_SITUATION,

MULTIPLAYER_PACKET_ID_SITUATION_DATA,

MULTIPLAYER_PACKET_ID_TEXTURE_REQUEST_LIST,

MULTIPLAYER_PACKET_ID_LEAVE_SESSION,

MULTIPLAYER_PACKET_ID_SYNC_INFORMATION,

MULTIPLAYER_PACKET_ID_POSITION_LLAPBH,

MULTIPLAYER_PACKET_ID_POSITION_VELOCITY,

MULTIPLAYER_PACKET_ID_INITIALIZE_AIRCRAFT_SEND,

MULTIPLAYER_PACKET_ID_AIRCRAFT_SEGMENT,

MULTIPLAYER_PACKET_ID_AIRCRAFT_CANCEL,

MULTIPLAYER_PACKET_ID_INITIALIZE_TEXTURE_SEND,

MULTIPLAYER_PACKET_ID_TEXTURE_SEGMENT,

MULTIPLAYER_PACKET_ID_TEXTURE_CANCEL,

MULTIPLAYER_PACKET_CHAT_TEXT_SEND,

} MULTIPLAYER_PACKET_ID;

Packet Structures
The following code includes the packet structures you must use in the multiplayer
system.

// You must use the following structure as a header for all multiplayer
packets to be sent.

Typedef struct MULTIPLAYER_PACKET_HEADER

{

MULTIPLAYER_PACKET_ID packet_id;

UINT32 data_size;

 14

VAR8 data[];

} MULTIPLAYER_PACKET_HEADER;

// Use the following structure to hold lat, lon, alt, pbh data.

Typedef struct REDUCED_LLAPBH_DATA

{

VAR32 pbh;

SINT32 lat_i;

SINT32 lon_hi;

SINT32 alt_i;

UINT16 lat_f;

UINT16 lon_lo;

UINT16 alt_f;

} REDUCED_LLAPBH_DATA;

// Template for changing to player packet.

Typedef struct MULTIPLAYER_PACKET_CHANGE_TO_PLAYER

{

DPID player_id;

} MULTIPLAYER_PACKET_CHANGE_TO_PLAYER;

// Template for changing to observer packet.

Typedef struct MULTIPLAYER_PACKET_CHANGE_TO_OBSERVER

{

DPID player_id;

} MULTIPLAYER_PACKET_CHANGE_TO_OBSERVER;

// Template for the "player changed planes" packet.

typedef struct MULTIPLAYER_PACKET_CHANGE_PLAYER_PLANE

{

 15

ENUM engine_type;

STRINGZ aircraft_name[];

} MULTIPLAYER_PACKET_CHANGE_PLAYER_PLANE;

// Template for the basic position packet.

Typedef struct MULTIPLAYER_PACKET_POSITION_LLAPBH

{

UINT32 application_time;

UINT32 packet_index;

REDUCED_LLAPBH_DATA reduced_llapbh;

} MULTIPLAYER_PACKET_POSITION_LLAPBH;

// Template for the plane's position and velocities.

Typedef struct MULTIPLAYER_PACKET_POSITION_VELOCITY

{

UINT32 packet_index;

UINT32 application_time;

SIF32l at_velocity;

SIF32l on_velocity;

SIF32 alt_velocity;

UIF32 ground_velocity;

REDUCED_LLAPBH_DATA reduced_llapbh;

} MULTIPLAYER_PACKET_POSITION_VELOCITY;

// Template for the chat message data packet.

Typedef struct MULTIPLAYER_PACKET_CHAT_TEXT

{

STRINGZ chat_data;

} MULTIPLAYER_PACKET_CHAT_TEXT;

	Developing Multiplayer Add-Ons for Flight Simulator 2000
	Audience
	How Multiplayer Works
	Naming Convention

	Connecting an Add-On
	Determining Player Profiles
	Constructing a Packet
	Send-Only Packets
	Receive-Only Packets
	Packets Sent and Received
	Non-Relevant Packets

	Packet IDs
	Packet Structures

